
Week 3 - Friday

 What did we talk about last time?
 Trees
 Graph connectivity
 Breadth-first search
 Representing graphs

 A queue is a set where we extract elements in first-in, first-
out (FIFO) order

 A stack is a set where we extract elements in last-in, first-out
(LIFO) order

 Both data structures can be efficiently implemented by a
doubly-linked list

 BFS(s):
 Set Discovered[s] = true
 Set Discovered[v] = false for all v ≠ s
 Create list L[0] and put s in it
 Set layer counter i = 0
 Set current BFS tree T = ∅
 While L[i] is not empty
▪ Create list L[i + 1]
▪ For each node u ∈ L[i]
▪ Consider each edge (u, v) incident to u
▪ If Discovered[v] = false then
 Set Discovered[v] = true
 Add edge (u, v) to the tree T
 Add v to list L[i + 1]

▪ Increment layer counter i

 Weak bound: O(n2)
 We have at most n lists L[i], taking O(n) time to set up
 Each node occurs at most once in any list, so the total

iterations of the For loops in the While is n
 When we consider a node u, it has at most n edges, each of

which can be processed in constant time
 n iterations of the For loop taking at most O(n) time each

gives O(n2) time

 Stronger bound: O(n + m)
 The argument is the same except that there might be fewer

than n2 edges
 The total number of edges considered (in an adjacency list

representation) for all nodes u is 2m (because each edge is
seen twice)

 Total time then is O(n) set-up, O(n) nodes checked, and O(m)
edges checked, giving O(n + m) time

 DFS(s):
 Create stack S and put s in it
 While S is not empty
▪ Take a node u from S
▪ If Explored[u] = false then
▪Set Explored[u] = true
▪For each edge (u, v) incident to u
Add v to the stack S

 Because the stack is FILO, we will actually process the
adjacency list in reverse order from the recursive version of
DFS

 We can find the DFS tree by adding a parent array to the
algorithm
 When we add node v to the stack because of edge (u, v), we set

parent[v] = u
 When we mark any node u (other than s) as Explored, we add edge

(u, parent[u]) to the DFS tree

 Again, we can get O(n + m) time
 Adding and removing from the stack can be done in constant

time
 A node will get added to the stack every time one of its

adjacent nodes is explored
 The total number of nodes added (and removed) is bounded

by the total degree of the graph, 2m
 Running time is then O(n + m)

 Using either BFS or DFS, you will only find the connected
component containing s

 We can keep running either until we find all connected
components

 The running time O(n + m) is actually based only on the nodes
and edges in a particular connected component

 Finding all connected components will still only take O(n + m)
for the whole graph

 Recall the definition of a bipartite graph:
 A graph that can be partitioned into sets X and Y such that every

edge has one end in X and the other in Y
 Or, you can think of nodes in set X as red and nodes in set Y as blue

 An alternative, equivalent definition of a bipartite graph is one
that has no odd cycles

 Pick a node and color it blue
 Color all of its neighbors red
 Keep going, coloring neighbors, alternating which color you

use
 Don't change the color of a node if it's already colored

 If there are any edges that start and end in the same color, it's
not bipartite

 This algorithm is essentially BFS where, when adding a node
to layer L[i + 1], we color it red when i + 1 is even and blue
when i + 1 is odd

 Let T be a breadth-first search tree, let x and y be nodes in T
belonging to layers Li and Lj respectively, and let (x, y) be an
edge of G.

 Then i and j differ by at most 1.
 Proof by contradiction:
 Suppose i and j differ by more than one. Assume that i < j – 1. Since

x is in layer Li, the only nodes discovered from x belong to layers Li + 1
and earlier. If y is a neighbor of x, it should have been discovered and
put in layer Li + 1 or earlier.

 Let G be a connected graph, and let L1, L2, … be the layers
produced by BFS starting at node s. Exactly one of the following
two things must hold:

1. There is no edge of G joining two nodes of the same layer. In this
case G is a bipartite graph in which the nodes in even-numbered
layers can be colored red, and the nodes in odd-numbered layers
can be colored blue.

2. There is an edge of G joining two nodes of the same layer. In this
case, G contains an odd-length cycle, and so it cannot be
bipartite.

 Case 1. No edges join two nodes in the same layer. By the
Layer Lemma, every edge of G joins nodes either in the same
layer or in adjacent layers. Since no edges join nodes in the
same layer, they always join nodes in adjacent layers, with
different colorings. Thus, G is bipartite.

 Case 2: At least one edge joins two nodes of the same layer, x
and y. Let x and y be in layer Lj. Let z be the node with the
highest layer number possible while still being an ancestor of
x and y in the BFS tree. Let z be in layer Li, where i < j. There
is a cycle in G from z down to x, from x to y, and then from y
back to z. The length of the cycle is (j – i) + 1 + (j – i) = 2(j – i) +
1, which is odd. Thus, the graph is not bipartite.

 It can be useful to extend the adjacency list representation for
directed graphs

 As before, for node u, we have a list of nodes that u connects
to

 But we add a second list of nodes that connect to u as well
 In this way, we can efficiently determine all nodes that can

reach u

 We can run DFS or BFS on a directed graph starting at s
 Instead of getting a connected component, we will get a tree

of nodes reachable from s
 Not all nodes will necessarily have a path back to s

 We can also run DFS on reversed edges, yielding the tree of
nodes that can reach s

 A directed graph is strongly connected if, for all nodes u and
v, there is a path from u to v and a path from v to u

 Nodes u and v are mutually reachable if you can reach u from
v and v from u

 If u and v are mutually reachable and v and w are mutually
reachable, then u and w are mutually reachable

 To see if a graph is strongly connected, pick a node s and run
BFS from it

 Then run BFS on the reversed edge graph
 If both searches visit every node, it's strongly connected
 A strong component containing s is the set of all nodes v

such that s and v are mutually reachable
 For any two nodes s and t in a directed graph, their strong

components are either identical or disjoint

 A directed acyclic graph (DAG) is a directed graph without
cycles in it

 These can be used to represent dependencies between tasks
 An edge flows from the task that must be completed first to a

task that must come after
 A cycle in such a graph would mean there was a circular

dependency
 By running topological sort, we discover if a directed graph

has a cycle, as a side benefit

 A topological sort gives an ordering of the tasks such that all
tasks are completed in dependency ordering

 In other words, no task is attempted before its prerequisite
tasks have been done

 There are usually multiple legal topological sorts for a given
DAG

 Finish topological sort
 Greedy algorithms
 Scheduling

 Work on Assignment 2
 Due next Friday before midnight

 Read sections 4.1 and 4.2

	COMP 4500
	Last time
	Questions?
	Depth First Search
	Queues and stacks
	Implementing BFS
	Running time for BFS
	Better running time for BFS
	Implementing DFS (non-recursively)
	Notes about DFS
	Running time for DFS
	Finding all connected components
	Three-Sentence Summary of Testing for Bipartiteness, Directed Connectivity, and Topological Sort
	Testing for Bipartiteness
	Bipartiteness
	Detecting bipartiteness
	Layer lemma
	Claim of correctness
	Proof of correctness
	Proof of correctness (continued)
	Directed Connectivity
	Directed graph representations
	Directed DFS and BFS
	Strong connectivity
	Strong components
	Topological Sort
	Directed acyclic graph
	Topological sort
	Quiz
	Upcoming
	Next time…
	Reminders

